GENERAL DESCRIPTION

The universal isolated converter DAT 4530 is able to measure and linearise voltage, current and resistance signals, potentiometers and the standard thermocouples and RTDs with, if required, the cold junction compensation, the wires compensation. For mV, V and mA input it is possible to set an option for the fast sampling (option HS) or to extract the square root of the measured signal (option SQRT). In function of programming, the measured values are converted in a current or voltage signal on the two outputs. Moreover an output contact is available as trip alarm.
By dip-switches accessible opening the window on the side of the enclosure, it is possible to select the input type and range and the output type without recalibrate the device.
By Personal Computer the user can set the two outputs with independent settings, the parameters of the Trip Alarm and the optional parameters for his own necessity;
The galvanic isolation between input, outputs and power supply eliminates the effects of all ground loops eventually existing and allows the use of the converter in heavy environmental conditions found in industrial applications. The device guarantees high accuracy and performances stability both versus time and temperature.
The DAT 4530 is in compliance with the Directive UL 61010-1 for US market and with the Directive CSA C22.2 No 61010-1 for the Canadian market. It is housed in a plastic enclosure of 12.5 mm thickness suitable for DIN rail mounting in compliance with EN-50022 and EN-50035 standards. USER INSTRUCTIONS
The connections must be made as shown in the section "Connections".It is possible to configure the converter on field by dip-switch or Personal Computer as shown in the section " Programming ". The configuration by dip-switches can be made also if the device is powered (note: after the configuration the device takes some seconds to provide the right output measure).

TECHNICAL SPECIFICATIONS (Typical @ $25^{\circ} \mathrm{C}$ and in nominal conditions)

For the high alarm the relay goes on when the input signal is higher than the trip level and after the delay time. The relay goes off only when the input signal is lower than the trip level minus the hysteresis value or when reaches the minimum value of the input scale and after the delay time.

For the low alarm the relay goes on when the input signal is lower than the trip level and after the delay time. The relay goes off only when the input signal is higher than the trip level plus the hysteresis value or when reaches the maximum value of the input scale and after the delay time.

PROGRAMMING

CONFIGURATION BY PC

Notice: before to execute the next operations, check that the

drivers of the cable CVPROG in use have been previously

installed in the Personal Computer.

By software DATESOFT from version 2.7 it is possible to:

- set the default programming of the device;
- program the options not available with the dip-switch;
(burn-out level, CJC offset, trip alarm settings, delay on output, etc...);
- read, in real time, the input and output measures;
- follow the dip-switches configuration wizard.

To configure the device follow the next steps:

1) Open the protection plastic label on the front of the device.
2) Connect the two plugs of cable CVPROG to the Personal Computer
(USB plug) and to the device (uUSB plug).
3) Run the software DATESOFT
4) Select the COM port in use and click on "Open COM".
5) Click on the icon "Program".
6) Set the programming data.
7) Click on the icon "Write" to send the programming data to the device.

For information about DATESOFT refer to the software's user guide.

CONFIGURATION BY DIP-SWITCHES

NOTE:

- It is also possible to set the dip-switches using the wizard of the configuration software following the procedure described in the section "Configuration by PC" until the step 6 and clicking on icon "Switch".

1) Open the suitable door on the side of the device.
2) Set the input type by the dip-switch SW1 [1..5] (see TAB.1)
3) Set the output A type by the dip-switch SW1 [7..8] and SW2 [1..2] (see TAB.2)
4) Set, if available, the input option by the dip-switch SW1 [6] (see TAB.3)
5) Set the minimum input scale value (Zero) by the dip-switch SW3 [1..4] (see TAB.4)*
6) Set the maximum input value (Full scale) by the dip-switch SW2 [3..8] (see TAB.4)*

TAB． 1 －Input type settings

	EPROM＊ $\begin{aligned} & 90 \mathrm{mV} \\ & 200 \mathrm{mV} \\ & 800 \mathrm{mV} \\ & 10 \mathrm{~V} \\ & 20 \mathrm{~mA} \end{aligned}$		Tc J Tc K Tc R Tc S Tc T Tc B Tc E Tc N		Res． $2 \mathrm{~K} \Omega$ Res． 500Ω Pt100 Ni100 Pt 1K Ni 1 K Pot．＜ 500Ω Pot．$<50 \mathrm{~K} \Omega$

NOTES：
＊To set the input range refer to the TAB． 4 （next pages）referred to the input type selected by the TAB．1．
＊If the dip－switches SW1［1．．5］are all set in the position 0 （＂EPROM＂）， the device will follow the configuration programmed by PC（input type and range，output type and range，trip alarm＇s settings and options）．
＊If the dip－switches SW2［3．．8］and SW3［1．．4］are all set in the position 0 （＂Default＂），the device will follow the input scale programmed by PC for the input type selected by the dip－switches SW1［1．．5］
＊Eventual wrong dip－switches settings will be signalled by the blinking of the led＂PWR＂
＊If the dip－switch SW1［6］is set in the ON position and is in progress a measure by Resistance or RTD 2 wires sensor，it is necessary to connect the terminal I to the terminal L and the terminal G to to the terminal H ．

TAB． $4 \mathrm{a}-\mathrm{mV}$ ， Tc input scale settings

Zero	Full scale				
SW3	SW2	SW2	SW2	SW2	
1234 mV －${ }^{\circ} \mathrm{C}$	345678 mV －${ }^{\circ} \mathrm{C}$	$345678 \mathrm{mV}-{ }^{\circ} \mathrm{C}$	$345678 \mathrm{mV}-{ }^{\circ} \mathrm{C}$	345678	mV－${ }^{\circ} \mathrm{C}$
－0．Default		－ 75	日明明 225	－6abit	700
明－200	¢ 0	¢ 80	ABE日 250	日60日	750
－100		明日明	明明 255	日明	800
限明－80	10	甠碞	¢0\％ 275	－$\square_{\text {－}}$	850
明－60	15	－6明 95	明明 300	－60日	900
明－50	20	¢ 100	ATE日 325	－8080	950
明－40		明明 110	相碞 350	－80］	1000
\％－30	\％ 30	\％fata 120	\％ 375		1100
20	35	－ 130	400	－ata	1200
		－ 140	Abitit 425	Q日明	1300
明 0			吅明 450	－T80］	1400
明明	明明碞	\％fita 160	\％） 475	日80］	1500
因 20			－60］ 500	B60日	1600
－10 50	atida 60	－ 180	－明 550	¢0\％	1750
Tfld 100	\％ 65	Britab 190	Bribl 600	Butut	1800
T¢ 150	Aftaba 70	Afita 200	andid 650	\％008	1850

TAB．4b－Pt100，Pt1K，Ni100，Ni1K input scale settings

Zero		Full scale				
SW3		SW2 ${ }^{\circ}$	SW2 ${ }^{\circ}$	SW2 ${ }^{\circ}$	SW2	
1234	${ }^{\circ} \mathrm{C}$	$345678{ }^{\circ} \mathrm{C}$	$345678{ }^{\circ} \mathrm{C}$	$345678{ }^{\circ} \mathrm{C}$	345678	${ }^{\circ} \mathrm{C}$
－aba	Default	－6abub Default	－60日 75	－abab 210	日旬㫜	370
日明	－200	口－atag 0	¢ 80	二日anat 220	日Gata	380
－80］	－150	5			日明㫛	390
70日	－100		¢ 90	明的 240		400
－80	－50	15	－6tub 95	昭动 250	日昭㫜	425
日昍	－40		CRED 100		T日G0	450
日明	－30	昰昰	\％ 110	相碞	日昭㫜	475
700	－20				700\％	500
－80	－10	明明碞		明明 290	－60\％	525
－6\％	0	明明碞	crabi 140	¢RE日 300	日abat	550
－80	5	45	明昭		日明明	600
70］	10		¢0\％ 160		\％0\％	650
－60	20	明明碞	－T\％ 170	－60］ 330	－600］	700
－80	30		－ 180	340	－1008	750
－10	50		\％） 190	\％－90］ 350	\％00］	800
－17	100			¢70］ 360	－190］	850

Zero		Full Scale				
SW3		SW2	SW2	SW2	SW2	
1234		345678	345678	345678	34567	Ω
－abo	Default	－0bub Default	－600 800		－0．0］	1600
Tang	0	500	二atab 820	明日明 1175	Tabat	1650
Bra	150	520		㫿昭 1200	日昭㫜	1700
F日B	200	明明碞		相明 1225	日明明	1750
－\square_{0}	250	560	－680	明明 1250	日明昭	1800
7日B	300	580			日明	1850
日明	350	600	920	相昰 1300	B\％明	1900
708	400	吅明的	¢ 940	Ptigat 1325	\square	1950
－60］	450	640		－6］ta 1350	\square	2000
7日	500			二口丂⿴囗 1375	－6．0］	2000
日明	550	明明的	日明 1000	明日明 1400	\％日	2000
7日	600					2000
－0］	650	明碞 720	－ 1050	G日大马 1450	－	2000
$\square \square$	700	740			\％00］	2000
B0］	750	760			－	2000
－\％	800		1125	A¢¢ 1550	70］	2000

TAB．4d－Resistance＜ 500 ohm input scale settings

Zero		Full Scale				
SW3		SW2	SW2	SW2	SW2	
1234	Ω	345678	345678Ω	345678	345678	Ω
－ata	Default	－abab Default	ababl 125		日abab	370
－	0		¢6ata 130	\％ 220	日Guta	380
－0日	10		砳昭 135		日昭㫜	390
70日	20	明昭	明明 140		\％日G日	400
－$\square_{\text {a }}$	30	65	－ 145	－ 250		410
日明	40	明踦	¢日明 150	¢ 260	日G日日	420
－80］	50			昭昰 270	日昭㫜	430
708	75		160	280	780日	440
－6\％	100	明明碞	－6tab 165	－6］日 290		450
－6\％	125	明明碞	¢68］ 170	二atal 300		460
日明	150	明昰	175	310	日明昭	470
明明	175			㳓口 320	日明昍	480
－80	200		－ 185		－80］	490
－10	225		¢－700 190	\％－8． 340	日Butg	500
－$\square^{\text {a }}$	250		¢0\％ 195	\％ 350	atorit	500
18	300			¢¢0］ 360	motig	500

TAB． 4 e －Potentiometer input scale settings

Zero		Full Scale				
SW3		SW2	SW2 ${ }^{\text {a }}$	SW2	SW2	
1234	\％	345678%	345678%	345678 \％	345678	\％
－bab	Default	日成國 Default	－6bla 34	－6bub 66		98
7808	0	明明碞			日日大日	100
明咟	15	6			日昭㫜	100
㖩昭	20		明日昭 40	\％ 72	明日	100
日昍咟	25	明明昰	昭昰 42	明昰 74	－080	100
7日B	30	\％ 12		C76日 76	\％日昭	100
\％	35	14	明碞		－70］	100
\％00	40	的	48	¢0¢ 80	时	100
日明	45	18	－atib 50	－6］ta 82	－6tor	100
日昍	50	甠昭 20	¢－7］ 52		明昭	100
\％ 0	55		明明 54	明明 86	日明昭	100
70］	60		明明碞	¢¢88 88	\％\square^{4}	100
－80］	65		－ 58		6000］	100
口10］	70	\％） 28	晰 60	¢0］92	\％000	100
－10］	75	30	BPand 62	B40］ 94	180］	100
707	80		64		\％190］	100

Zero		Full Scale			
	mA	5678 mA		${ }_{3}^{\text {sw2 }}$ 2 678 mA	${ }_{3}^{\text {sw2 }}$ 2 678 ma
明	Default	Mibut Default	Gubil ${ }^{\text {ma }}$	Bugil 11.5	cibil 16
明	0	5	H60］ 8.2	Putil 11.75	16.5
978	1.5	明明 5.2	明明 8.4	Whati	M 17
70］	2	明明 5.4	7fung 8.6	7017 12.25	7\％17 17.5
日18	2.5	明阿 5.6	Mr978 8.8	明明 12.5	618 18
780	3	7 5 ¢ 5.8	7ring 9	7fing 12.75	
6781	3.5	67phat	67978 9.2	67P17 13	6FP19 19
7981	4	77phab 6.2	7P74］ 9.4	70］［13．25	7194］ 19.5
日 ${ }^{1}$	4.5	明阿 6.4	W6．78 9.6	6flef 13.5	60］ 20
818	5	76180．6		760］ 13.75	P1970 20
68\％	5.5			970］P14	6FIPT 20
478	6	P70］ 7	7FITP 10.25	71987 14.25	7407P 20
	6.5			B6］P14．5	61980 20
	7	7078］ 7.4	7097］ 10.75	Tfitel 14.75	P190］ 20
687	7.5	67078 7.6	6P17 11	980］ 15	67P17 20
1978	8	7974］ 7.8	7PITH： 11.25	7017 15.5	19374 20

TAB． 4 g －Voltage input scale settings

Zero		Full Scale			
	Voll		${ }_{3}^{\text {sW2 }} 45788$		${ }_{3}^{\text {SW2 }}$ S 6888
B40	Defaut	cifly Defaut	cubal 3.4	60098 6.6	Wuti 9．8
7018	0	7006 0.5	760］ 3.6	70008 6.8	P60］ 10
680	1.5	明明 0.6	Gfugl 3.8	6Fbal 7	G70］ 10
P ${ }^{\text {d }}$	2	P明明 0.8	7flat 4	70］08 7.2	7fler 10
68］	2.5	明明 1		What 7.4	W10］ 10
780	3	7fral 1.2	\％ 7.4	76］fl 7.6	［ 10
678	3.5	69P601．4	cipal 4.6	6FPefl 7.8	
978	4	79704 1.6	7 78.8	970198	P7817 10
B6I	4.5	60］ 1.8	60］H 5	W8078 8.2	W6P7］ 10
818	5	70］ 2	\％ 5.2		［ 10
6818	5.5	6find 2.2	G780］ 5.4		GFipl 10
748	6	7fing 2.4			7P10 10
687	6.5	61980 2.6		69780 9	W1087 10
0878	7	7076］ 2.8	7073 6	7079］ 9.2	P1097 10
6878	7.5	67978	6790］ 6.2	67078 9.4	6FPOP 10
1897	8	7974］ 3.2	THPTM 6.4		74P\％ 10

INSTALLATION INSTRUCTIONS

The device is suitable for fitting to DIN rails in the vertical position. For optimum operation and long life follow these instructions:

When the devices are installed side by side it may be necessary to separate them by at least 5 mm in the following cases:

- If panel temperature exceeds $45^{\circ} \mathrm{C}$.
- Use of high power supply value (> 27 Vdc).
- Use of one or both current outputs.
- Use of active current input.

Make sure that sufficient air flow is provided for the device avoiding to place raceways or other objects which could obstruct the ventilation slits. Moreover it is suggested to avoid that devices are mounted above appliances generating heat; their ideal place should be in the lower part of the panel.
Install the device in a place without vibrations.
Moreover it is suggested to avoid routing conductors near power signal cables (motors, induction ovens, inverters etc...) and to use shielded cable for connecting signals.

ISOLATION STRUCTURE

DIMENSIONS (mm)

LIGHT SIGNALLING

LED	COLOUR	STATE	DESCRIPTION
PWR	GREEN	ON	Device powered
		OFF	Device not powered
		BLINKING	Wrong dip-switches settings
ALARM	RED	ON	Trip alarm active
		OFF	Trip alarm not active

The symbol reported on the product indicates that the product itself must not be considered as a domestic waste.
It must be brought to the authorized recycle plant for the recycling of electrical and electronic waste.
For more information contact the proper office in the user's city, the service for the waste treatment or the supplier from which the product has been purchased.

HOW TO ORDER

The device is provided as requested on the Customer's order.
Refer to the section "Programming" to determine the input and output ranges. In case of the configuration is not specified, the parameters must be set by the user

ORDER CODE EXAMPLE:
DAT $4530 /$ Pt100 $0 \div 200^{\circ} \mathrm{C} / 4 \div 20 \mathrm{~mA} / 4 \div 20 \mathrm{~mA} / 3$ wires

